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ABSTRACT

The Naval Postgraduate School (NPS) is currently involved

in a long term project to investigate and develop real-time

software for command and control of Autonomous Underwater

Vehicles (AUV). In support of this goal, NPS is currently

designing and fabricating a testbed AUV.

This thesis describes the design, development and testing

of a real-time scheduling software package to act as the top

layer of control software for the AUV.

Also discussed are the various real-time scheduling

policies available along with the features of the assigned

operating system that allow implementation of the scheduler.
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I. INTRODUCTION

A. GENERAL

The Naval Postgraduate School (NPS) is developing an

autonomous underwater vehicle (AUV) - an untethered,

intelligent, robot submarine. The current AUV, AUV-II, is the

second in a series of three vehicles to be built. It has been

designed as a testbed for research in adaptive control,

mission planning and -xecution, data collection and analysis,

and the uses of various sensors.

AUV-II is driven by a pair of 4" propellers and four

hovering thrusters. These and the eight control surfaces used

allow for a high degree of vehicle control. The vehicle's

sensors include four sonars, a depth cell, and a speed

indicator. Positional data is provided by three on-board

gyroscopes and a magnetic compass.

The on-board computer hardware is centered around a twelve

slot G-96 bus supplied by the GESPAC corporation [DIBBLE 90].

The bus hosts a Motorola 68030-based processor board along

with 2.5 Megabits of RAM and 4 Megabytes of EPROM.

Five other slots are dedicated to a 200 Megabyte hard disk

drive, parallel and serial communication ports, an analog-to-

digital channel from the sensors, and a digital-to-analog

channel to the effectors. The remaining slots are expected to

1



be used for additional memory and Transputer boards. Figure

1.1 [HEALY 90) shows the internal and external configurations

of AUV-II.

RID V E P0 4 (

Figure 1.1 Internal and External Configurations of AUV-II
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The computer uses the OS-9 operating system developed by

MICROWARE for GESPAC [GESPAC 88]. OS-9 is a complete operating

system having a file system, native compilers, a built-in

editor, the ability to support local area networks, multi-

tasking abilities, real-time features such as timers, process

creation and deletion primitives, process priority

assignments, and signal sending and receiving structures. It

has the added advantage of having been used in prior AUV

research [HEALY 90]. The AUV-II project is ongoing, and has

had many successful trials in the NPS pool.

B. COMPUTATIONAL REQUIREMENTS OF THE AUV

For successful mission completion, AUV-II must be able to

execute a complex set of both periodic and aperiodic processes

(or tasks) that may have widely varying attributes such as

variable execution times, frequencies and response times.

These tasks may include: mission planning, path planning,

guidance, effector control, sensor control, collision

avoidance, and data collection [HEALY 90]. The inter-

relationship of these are shown in Figure 1.2 [HEALY 90]. As

can be seen in Fig. 1.2, the operator starts, and controls the

entire mission. The focus of this thesis is to provide real-

time control for that mission, consisting of many tasks with

widely differing computational requirements. For example,

block 8, collision avoidance, is an aperiodic task - since

obstacles cannot be predicted - while block 6, navigation,

3



predicted - while block 6, navigation, requires periodic

computer attention. Also, while both block 6 and block 5,

sonar, are periodic, their respective periods are quite

different; sonar having the higher frequency. Since obstacle

avoidance has not yet been completely integrated in the AUV,

this thesis concentrates on periodic task scheduling and

execution. Once the parameters of aperiodic tasks have been

finalized, it should require very little extra work to

incorporate aperiodic scheduling into the existing control

software. A more detailed analysis of Figure 1.2 may be found

in [HEALY 90]. Computational resources must be used such that

all tasks complete execution within their respective periods,

or, in real-time terms, meet their deadlines in a predictable

and reliable manner regardless of the difference in their

attributes.

In the current vehicle software, all processes are

executed in an infinite loop operating at roughly 10 Hz.

Although this is adequate for the simple missions now being

executed, it lacks the necessary sophistication for the more

complex missions planned. These missions may include, for

instance, tasks that are required to be executed at different

frequencies. For example the sonar system operates at 5 Hz

while the motion control loop operates at 10 Hz.

A recent study [BIHARI 90] of the processing requirements

of this project delineates the necessity of an efficient, hard

real-time scheduler to ensure the correct functioning of the

4
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vehicle. A scheduler is the top layer of AUV-II software,

which coordinates the task set to ensure that all process

deadlines are met in a reliable and predictable manner. The

scheduler must be able to, at a minimum, access at least one

accurate time base, run processes at specified points in time,

support synchronous and asynchronous communications between

processes, and place bounds on the response time of aperiodic

processes and events. An important attribute of a scheduler is

how it responds to an overload condition in which it is not

possible for all tasks to meet their deadlines because they

exceed the net processing reserves available. Overload may

occur in two ways, transient or sustained. Transient overload

is caused by the execution of an aperiodic event that requires

the suspension of one or more periodic events. Sustained

overload is caused by unexpected increases in process

execution time such that the processor load exceeds its

resources. A scheduler must be able to handle overload

conditions in a stable manner. For a scheduler to be

considered stable, two requirements must be met. The first

being that a subset of the most critical tasks aways meet

their respective deadlines. The second is a quick return to

normal operation once the overload condition has passed.

C. OBJECTIVES OF STUDY

OS-9 scheduling policy cannot provide hard real-time

performance without the addition of a control layer of

6



software to schedule the task sets required by the AUV.

Therefore, the main objective of this study is to develop a

real-time scheduler that meets the following requirements:

1. It must use only 0S-9 real-time primitives, with no

modifications to the operating system.

2. It must be capable of maintaining a relatively high

processor utilization without missing task deadlines.

3. It must be able to support task sets with varying

characteristics.

4. It must remain stable under transient overload.

Rapid recovery after elimination of the overload is of

prime importance in this case.

5. It must remain stable and degrade gracefully under

sustained overload. In this case, the important feature

is meeting the deadlines of a subset of more critical

processes while sacrificing those that are less

critical.

6. Since the scheduler will be implemented on an already

functioning vehicle, it must be able to integrate and

communicate with the existing motion control software

with as few modifications as possible to that

software. AUV software modules are being designed by

different project members that have little knowledge of

the scheduler; therefore, it must be simple to use and

maintain. In order to simplify the use of the scheduler,

7



a graphical interface is being developed and is the

subject of a follow-on thesis.

D. METHOD OF APPROACH

This thesis deals with the implementation of a theoretical

method of real-time scheduling into a practical working

scheduler robust enough to handle the various situations that

are to be expected on a functioning vehicle. As such, not only

must the scheduler meet the requirements of the selected

scheduling policy, but also account for the real world

conditions such as process switching overhead and variable

process execution times that will degrade performance below

theoretical values. It was necessary to determine what

processor loads were feasible and what characterization of

processor set provided the required performance. To facilitate

this implementation the following steps were taken:

1. Selection of a suitable scheduling policy.

2. Implementation of the policy using OS-9 dependent

resources.

3. Experimental determination of the available utilization

and observation of scheduler stability under various

loads and task set characteristics.

8



All programming for this project was done using the

resident C compiler provided by MICROWARE, and is closely tied

to the OS-9 operating systeia [MICROWARE 87]. Porting to

another system would require extensive modification of the

scheduler.

This project successfully implemented a scheduling layer

of software that can determine if a given periodic task set

can be successfully scheduled to deliver processor utilization

exceeding 85%. Aperiodic tasks can be scheduled on a more

limited basis by treating them as periodic events with a

period equal to infinity. The improvement over the passive OS-

9 policy is clearly demonstrated in a later chapter of this

thesis.

E. THESIS ORGANIZATION

Chapter II presents a discussion of various real-time

scheduling policies and outlines the reasons for using rate

monotonic scheduling for AUV-II. Chapter III is a more

complete and detailed study of rate monotonic scheduling

theory. Chapter IV details the implementation of rate

monotonic scheduling using the OS-9 operating system. Chapter

V presents the methods and experiments used to determine

scheduler performance and veracity. Chapter VI summarizes the

results of this study and describes future directions for

study.

9



II. AN OVERVIEW OF REAL-TIME SYSTEMS

A. GENERAL

A real-time system is defined to be one in which the

various processes adhere to time constraints determined by the

application. Although real-time systems are often associated

with extremely fast processing speeds, this is not an accurate

interpretation. A real-time system refers to the timely

occurrence of events and the intervals involved may range from

microseconds to years [LEVI 90].

Real-time systems can be loosely divided into two

categories, hard deadline and soft deadline systems. Hard

deadline systems are those where the missing of a process

deadline is catastrophic. Conversely, while making all

deadlines is desirable on a soft deadline system, missing one

is not a fatal error [LEVI 90].

Assigning priorities to different concurrent processes is

a common mechanism used to share computational resources in a

real-time system. Based on how the priorities may be assigned,

real-time systems can be further classified as fixed priority

systems in which all process priorities are fixed at run time,

or dynamic priority systems in which priorities can be changed

during execution. Rate monotonic scheduling [LIU 73] is an

example of a scheduling policy that uses fixed prioritization.

10



Conversely, earliest deadline scheduling policy [LEVI 90]

makes use of dynamic scheduling for successful operation. If

these two types of systems are combined, a hybrid is achieved

that is known as a mixed priority system [LEVI 90].

B. OS-9 SPECIFIC REAL-TIME PRIMITIVES

The OS-9 operating system contains a wide range of real-

time primitives that can be used to implement a functioning

real-time scheduler. This section describes these primitives

in a general fashion; a detailed listing of the commands and

their functions may be found in Appendix D.

OS-9 is, inherently, a multi-tasking system. This is

demonstrated by the process priority assignment embedded in

OS-9. Processes may be assigned a priority from one of 65,536

separate priority levels when they are forked into existence.

The forked processes are placed on a ready-to-execute queue in

direct order of their priority. The process at the head of the

queue is executed for one or more ticks. A tick is the

smallest unit of time the system recognizes and may be set by

the system operator for a duration as low as 10 milliseconds.

Once a process has started executing, it will execute until it

has completed execution or until the end of the current tick.

All non-executing processes have their priorities increased by

one for each tick spent in the ready-to-execute queue, a

process referred to as aging [MICROWARE 87]. Aging is normally

11



used to ensure that all processes eventually receive the

attention of the processor regardless of their priority.Once

a process has executed, it is reduced to its original

priority. The queue is checked every tick to determine which

process has the highest priority and, therefore, the right to

the processing unit. Process switching times are on the order

of 50 microseconds [DIBBLE 88).

OS-9 uses this queue and various commands to support

real-time operations. These commands include timing commands

that check absolute, relative, and elapsed times. These

commands all have a resolution of a tick. System commands are

also provided that allow processes to suspend themselves. A

suspended process is removed from the ready-to-execute queue

and does not age until reactivated. Reactivation can be

accomplished by either an elapsed time counter, an absolute

time event or upon the receipt of a signal from another

process. Signal sending and receiving mechanisms are closely

coupled with process suspension and are used to provide

interprocess coordination and timing. Signals can be used to

either wake up or kill a process. Customized signals are also

supported. Another class of primitives that help in the

development of real-time systems are the ones that allow for

access to process identities, states, and parameters [GESPAC

88].

12



C. IMPLEMENTATION

The rate monotonic scheduling algorithm was chosen as the

method to implement upon AUV-II, due to it being the optimal

fixed priority scheduling algorithm [LIU 73]. While dynamic

scheduling can increase overall processor utilization, it is

much more difficult to implement in a practical fashion due to

the problem most operating systems have in arbitrarily

reassigning priorities during execution [LIU 73]. Rate

monotonic scheduling is presented in greater detail in the

following chapter.

13



III. RATE MONOTONIC SCHEDULING THEORY

A. INTRODUCTION

The rate monotonic scheduling (RMS) algorithm was chosen

as the basis for the scheduler on AUV-II; its practical

aspects having been recently analyzed [SHA 90]. RMS uses the

following model of the workload.

1. The workload must consist of independent processes; an

independent process being one that does not require the

execution of any other process to function.

2. All process priorities are fixed at the time of

execution.

3. The system must provide for pre-emptive execution; i.e.

higher priority processes will interrupt the execution of

lower priority processes.

Given these conditions, RMS guarantees that in the worst

case conditions, all deadlines will be met for at least a

69.3% processor load. Processor load is defined to be the sum

of the execution times of each process divided by the

respective period of each process. This function is shown in

Equation (3.1).

14



X= C1 C2,...,C

7T T.

where
(3.1)

X is the processor load
Ci is the execution time of process i
T is the period of process i
n is the number of processes

The above mentioned limit is known as the Liu-Layland bound

named for the two men who derived it [LIU 73].

B. PERIODIC TASK SCHEDULING

One of the most important attributes of a task set is its

phasing; the order and timing in which the various tasks are

to be executed. The Liu-Layland bound represents the worst

case task set phasing; i.e. one with the maximum of number of

task preemptions. A system may be able to support a higher

processor utilization if the task set phasing is more

favorable. Two theorems have been developed to determine if

the higher processor load is schedulable [LEHOCZKY 89]. For a

task set to be considered schedulable, all tasks must meet

their respective deadlines under all task set phasings.

The first method used in determining schedulability is

given by Equation (3.2) [SHA 90].

15
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T1 2 T

where (3.2)

C. is the execution time of process i
T1 is the period of process i
n is the number of processes

The upper limit of 1.0 decreases monotonically until, as

n approaches infinity, the right side of Equation (3.2) yields

the Liu-Layland bound of 0.693, or, 69.3%. If the processor

load is less than or equal to this bound, the task set is

always schedulable. The second method for determining

schedulability is more complex, but more exact, and is given

in Equation (3.3). The term scheduling points in Equation

(3.3) refer to the arrival times for all processes in the task

set within the longest period in the task set. For example, a

task set consisting of four tasks periods 4, 6, 12, and 25

units, would have the following set of scheduling points: 4,

6, 8, 12, 16, 18, 20, 24, and 25 [SHA 86].

Vi, 1gi.n

i rI Tk S 1.0
.1 1lTk Tj

(k, 1) eR i

where (3.3)

Cj is the execution time of process j
T. is the period of process j
R. is the collection of scheduling points for the task set

T.
1 is the ratio of [ I J

16



Equation (3.3) is evaluated for the entire set of

scheduling points and the results compared to the value 1.0.

If any of these values are less than, or equal to, 1.0, the

task set is always schedulable under RMS. Once schedulability

has been determined, RMS assigns a fixed priority to each

process. This assignment is in inverse proportion to the

period of the process; the shorter the period, the higher the

priority. Once priorities have been assigned, the processes

can be executed using the preemption functions provided by the

system. Although neither of the two methods of determining

schedulability guarantees more than a 69.3% utilization under

worst case conditions, average case utilization values can

range from 85-90%, well above the Liu-Layland bound. This

higher utilization value is attributable to the concept of the

critical instant [SHA 90]. A critical instant is one in which

all processes are initiated at the same instant, thus creating

the maximum number of preempted processes. It has been

determined that the higher the number of critical instants,

the lower the achievable utilization [SHA 86]. This then can

be used to predict worst case performance and, by judicious

selection of task periods (assuming some flexibility in period

selection), a task set can be 'tuned' to achieve high

utilization.

C. APERIODIC TASK SCHEDULING

Aperiodic tasks are tasks that appear on an irregular,

17



unpredictable basis. An example of an aperiodic process for

the AUV-II would be collision avoidance. RMS services

aperiodic tasks using a sporadic server; that is, a mechanism

that executes the task if a request is sent from the aperiodic

task, and if there are sufficient reserve computational

resources to process the request. In other words, the system

workload must be low enough that the aperiodic event can be

served without disrupting the periodic task set. Provisions

must be made for the case where the aperiodic event is crucial

and therefore needs to be able to preempt all, or part, of the

periodic task set [SHA 90].

C. PERIOD TRANSFORMATION

RMS always guarantees that a certain subset of the task

set will meet their deadlines under worst case conditions.

This subset is known as the critical set. Since process

priority is in inverse proportion to period lengths, under

some circumstances, a process with a long period and lower

priority may serve a more critical function than a process

with a shorter period and must be included in the critical

subset [SHA 90].

This problem is solved using a technique known as period

transformation. This method requires splitting the critical

process into two logical parts, each one having 1/2 the worst

case execution time of the process and 1/2 the requested

period. Priority is then assigned to the process according to

18



the reduced period length and, thus, elevated. Once task set

execution begins, the critical process executes 1/2 of its

worst case execution time in the first half of its period and

then suspends itself. The other half of the execution comes

during the second half of its main period. This is shown in

Figure 3.1 [SHA 90].

T/2 T

FIRST PART SECOND PART

IIOF P1 OF Pl

TIME

Figure 3.1 Time Line Showing Period Transformation

Given the limitations of the OS-9 operating system, some of

the features of RMS were more difficult to implement than

others. The RMS attributes implemented in this thesis include

schedulabilty checking, periodic process serving, a limited

ability to service aperiodic tasks, and the ability to remain

stable under overload conditions. The details of this

implementation are described in the next chapter.

19



IV. AN IMPLEMENTATION OF RMS ON OS-9

A. GENERAL

The scheduling software, as implemented on the GESPAC

computer, consists of five logical parts. These are: the

scheduler startup process, initialization, schedulability

analysis, the master scheduler, and the modifications that

need to be made to the processes called by the scheduler.

Due to the limitations of the OS-9 operating system, and the

specification that no modifications be made to this system,

this was a non-trivial problem. As mentioned before, the

scheduler is highly 0S-9 dependent; therefore, there has been

an effort made to highlight all non-standard C commands used

in order that future modifications to the scheduler can be

accomplished without excessive difficulty. Figure 4.1

illustrates the sequence of steps in the scheduling software.

These are more fully explained in sections B through F of this

chapter.

B. SCHEDULER STARTUP

To function correctly, the run time module must have the

highest priority on the system. This is due to its function as

the coordinator of the AUV-II software; in other words, it

must not be preempted by a called process while it is

20
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Startup

Scheduler

Initialization

Schedulability

Analysis
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Called
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Figure 4.1 Step Sequence of Scheduling Software
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executing the scheduling process. In the OS-9 operating

system, run-time priority is set by the command, osgforkc, and

cannot be changed in the process itself. Thus, it was

necessary to develop a small calling program to establish the

scheduler's initial high priority. It first spawns the

scheduler and then suspends itself until the completion of the

mission. It should be stated that all processes to be called

using the os9forkc command are required to have an executable

module located in a directory available to the scheduler.

Since they will be called by OS-9 commands, the called

processes should not be linked together during the compilation

process.

As stated in Chapter II, OS-9 provides for 65,536 distinct

priority levels. It was arbitrarily determined that a priority

level for the scheduler of 62,000 would be appropriate. This

is high enough to preempt all other system processes, but

still leaves some higher priorities for emergency processes

such that the scheduler would be deliberately interrupted.

This priority can be easily changed in the startup module. The

source code for the startup module is located in Appendix A.

C. SCHEDULER INITIALIZATION

Scheduler initialization begins by entering task set

parameters. The first parameter is the number of processes in

the task set. Once this has been entered at the keyboard, a

loop is started that brings in the names of the processes,
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their periods and execution times. Although this is currently

entered manually at the keyboard, it may be changed to a file

input/output system for implementation on the vehicle if

desired. Process execution times can be obtained in two ways;

the first is direct input by the system operator, the second

is done by the scheduler as it forks slightly modified

versions of the modules and times their lengths of execution.

This procedure is outlined in Appendix B.

Once the task set parameters are available to the

scheduler, the program sorts the processes by period from

shortest to longest with ties broken arbitrarily. This is

accomplished by a standard heap sort routine. This sort also

establishes the relative priorities of the process from

highest to lowest in inverse proportion to the length of the

respective periods.

Absolute priorities must be assigned to each process

before they can be forked off for execution. Due to the

inherent conflict between the fixed priority requirements of

RMS and the automatic aging of non-executing processes as

implemented by OS-9, it became necessary to space process

priorities far enough apart to ensure that no processe

priority could overtake another. This scheme successfully

negates the run-time aging of process priorities inherent to

OS-9 and gives the illusion of fixed priorities to the

scheduler.

Absolute priority assignment is accomplished by first
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finding the least common multiple of the periods of all

processes in the task set. Once the least common multiple is

established, priorities are set using Equation (4.1).

(H%)
j.1

where (4.1)

Pi is the processes priority
P. is the highest priority process
C. is the execution time of process j
Tj is the period of process j
LCM is the least common multiple of all periods

The process with the shortest period, and therefore the

highest priority, is assigned a priority of 60,000. This is P

and was chosen to be well below the priority of the scheduler,

while being large enough to permit a wide range of priorities

under it. To illustrate the use of Equation (4.1), consider a

task set consisting of two processes. Process one has a period

of 50 ticks, and an execution time of 12 ticks. Process two

has a period of 100 ticks, and an execution time of 15 ticks.

Process one is automatically assigned a priority of 60,000,

the maximum available. Process two has its priority assigned

by subtracting the product of both execution times, a value of

180, and dividing it by the product of the periods, a value of

5000. This quotient is 0.036 and is multiplied by the LCM of

the two periods, 100, giving a final value of 3.6. This is
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rounded up to the next highest integer, 4.0, and subtracted

from the value of the highest priority process. Process two,

then, is assigned a priority of 59,996.

Although Equation (4.1) gives the correct absolute spacing

between process priorities, under certain conditions, it can

cause abnormally wide spacings between the priorities. This is

usually caused by a large number of processes with different

periods resulting in a large least common multiple. An example

of this is given by considering two, two-process sets. Set one

has two tasks with periods of 50 and 100 while set two has two

task with periods of 51 and 100. Although these two sets are

virtually identical, the first has a least common multiple of

100 while the second is 5100. When these least common

multiples are used in Equation (4.1), the spacings would place

the priorities of the second set much farther apart than in

the first set. If there were an infinite supply of priority

levels, this would be no problem, but, ds mentioned earlier,

0S-9 supplies only 65,536 priorities which are quickly spanned

by a reasonably large task set. The solution to this problem

was to first detect the large spacings and then reassign them

the priority equal to the priority of next highest priority

process minus the value equal to the number of ticks of the

longest period in the task set. This value is theoretically

the most any one process could age before it is executed. This

two pronged approach to prioritization has proven to be

successful in all tests and experiments using the scheduler.
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There were no recorded cases of a lower priority process

overtaking a higher priority process.

D. SCHEDULABILITY ANALYSIS

The schedulability of a task set uses the process

described by theorem three [SHA 90). The steps are described

in a series of Equations (4.2-4.5) shown below.

The first step, given in Equation (4.2), is to determine

the processor demands made by the task set as a function of

time [Lehoczky 89]. The second step is to normalize the

results to achieve a value between 0.0 and 1.0. This

i

wi(t) : cj
j.1 ' 7'

where

W1 (t) is processor load as a function of time (4.2)
lign
n is the number of processes e the task set
C, is the execution time of process j
T. is the period of process j
t is time as a continous variable

is accomplished in Equation (4.3) by dividing by time and is

simply an intermediate step in the process of converting the

results from continuous to discrete values. The next step is

L1 (t) = Wi(t) /t (4.3)

given is Equation (4.4) where the continuous time variable, t,
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is converted, by the computation of scheduling points, to the

discrete variable, s, as discussed in Chapter II.

Li = min(0 s i ! T L(s.)

where (4.4)

s i are the various scheduling points

The final step is a check to determine if Li has a

value less than or equal to 1.0, as shown in equation (4.5).

Li 9 1.0 (4.5)

If the task set meets schedulability requirements, a

confirmation message is sent to the system operator and the

master scheduler initiated. If the task set does not meet

schedulability requirements, an error message is sent to the

operator and the scheduler is suspended until a workable task

set is developed.

E. THE SCHEDULER

Once priorities have been calculated and schedulability

determined, scheduling analysis is complete and task set

execution may begin. The analysis and execution functions are

currently part of the same software module. This means that

analysis is done in the field prior to the beginning of the
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mission. Since the task set has presumably been checked before

the various field tests, only the executable module needs to

be ported to the AUV, with the various values generated by the

analyzer being read from a disk file prior to the start of a

mission. This will require some minor modifications to the

scheduler.

The first step is the creation of the individual processes

that are listed in the task set. This is done using the OS-9

commands os9forkc and os9exec. The original program

specifications had called for a scheme that created a process

at the start of each period, executed the process and then

killed the process prior to the end of the period. This proved

to be unworkable when it was found that the procedure for

creating a process took a random time varying between 220 and

340 milliseconds. Since at least one vehicle control module

was required to run at 10 Hz, this method was fatally flawed.

A more sophisticated approach was developed that entailed

creating each process once, at the beginning of the scheduler

module, and then, after execution, suspending the process

until receipt of a signal from the master scheduler. This

method reduced the task switching time to 55 microseconds,

some 400,000% faster than the original method. The second

method had the added benefit of reducing the amount of

processor time conducting the 'garbage collection' required in

the creation and killing of processes.

As the scheduler creates each process, two entries are
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made in the table that is the heart of the scheduler and is

shown in Figure 4.2.

PROCESS ID TIME UNTIL NEXT
NUMBER EXECUTION

1 50
2 100
3 150
4 250

n Tn

Figure 4.2 Table Data Structure with Sample Entries

The first column in the table is the identification number

of each process. The second column is the next time to

execution for each process. The master scheduler enters an

infinite loop, once all processes have been created and placed

on the ready-to-execute queue. Once in the loop, the scheduler

scans the second column for zero values which indicates that

the process is ready to start execution. If a zero entry is

found, the process identification number is recorded and the

scan continued through the table. Once all entries in the

table have been checked, a time stamp is taken and the flagged

processes are sent wake up signals from the scheduler. When

the last signal has been sent, another time stamp is taken and

the elapsed time from the start of the signaling procedure to

the end is recorded and all signaled processes have their next

time to execute entry reset to their original period. All
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table entries then have the elapsed time subtracted from the

second column of the table. This is done to prevent scheduler

overhead from affecting the scheduling process. The scheduler

then scans the second column for the smallest value present.

This value is subtracted from all second column entries and

the main scheduler is then suspended for this length of time

to allow the called processes to begin execution. The possible

conflicts between the children processes are resolved through

the preemption allowed by the priorities assigned. This entire

process, in psuedo-code, is illustrated in Figure 4.3.

While(true)
scan table for zero entries;
if entry = 0,

record id number;
take time stamp #1;
for i=0 to m /* m = number of processes to be

signaled */
find process(i) id number;
signal process(id number);
end for loop
take time stamp #2;
adjustment = time stamp #2 -time stamp #1;
for i = 0 to n /* all processes */
table entry(i) = table entry(i) - adjustment;

scan table for smallest entry (in ticks);
for i=O to n /*all processes */
table entry(i) = table entry(i) -- smallest entry;
suspend scheduler for smallest entry ticks;

end while;

Figure 4.3 Psuedo Code for Signaling Process
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During program development, the control loop was modified

from an infinite loop to a finite loop controlled by the

number of signals sent. It is recommended that onboard the AUV

it remain an infinite loop with logic implemented to halt the

loop from an outside source such as a keyboard interrupt or a

time signal from the system clock or an elapsed time counter.

This will allow for a more graceful exit from the program than

the currently required rebooting of the system. A copy of the

source code for the scheduler is found in Appendix B.

F. MODIFICATIONS OF CALLED PROCESSES

One goal in the original specifications for the scheduling

software was that the other software modules would not have to

be modified, that they could run 'as is.' This led to the

original plan of create/execute/kill discussed earlier. When

this proved unworkable, it was determined that a minimum

amount of modification would have to be made in the other

oftware modules in the system. These were designed to be

quickly and easily installed in only a few minutes per module.

To implement the first modification, it is necessary to

determine the sections of software that are to be executed

each period versus those that are to be only run once, such as

process initialization. Once these sections are identified an

infinite while loop is installed around them. The second

modification is to install the signal catching commands in the

loop between the last local line of code and the end of the
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infinite while loop. These modifications are demonstrated in

Figure 4.4. The command most suitable for this is the OS-9

main()
{

initialization commands;

while(I)

repeated commands;

wait 0;

exit 0;

Figure 4.4 Modifications to Called Processes

command wait() with nc parameters. If it becomes desirable to

return data or instructions back to the parent process, the

OS-9 command exit() could be used. The wait() command suspends

the child process (removes it from the ready-to-execute queue)

until it receives a signal from the scheduler. During normal

execution only two signals would be sent: a '1.0' to wake the

process up, or a '0.0' indicating that the process is to be

killed and its allotted memory returned to the system. The

'0.0' is normally sent at the end of the mission to ensure a

graceful termination of the scheduler.

The emphasis on the graceful conclusion of the scheduler

is based on practical experience on the OS-9 system. When a

process finishes without an exit() command, the process

identification table and the processes allotted memory remain
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allocated by the systena until the system is rebooted. It takes

surprisingly few of these to fill and fragment the system

memory. When the system is in this condition it will continue

to attempt to function normally, but no processes will

execute. This is annoying in a PC-based machine, and possibly

dangerous to an operating vehicle.

The last modification is used if the operator intends to

allow the scheduler to measure the execution times of the

processes. Since the time only needs to be measured over one

execution of the process the infinite loop is removed and the

wait() command is replaced with the exit() command. The

modified process is named the same as the original process

with the letter 'a' appended to it. As with the original

process a executable module must be available to the system.

G. APERIODIC EVENTS AND PERIOD TRANSFORMATION

Aperiodic events are handled by the scheduler in the

current implementation by treating them as a periodic event

with an infinite period. This method assumes that aperiodic

events can be sent a wake up signal by a process other than

the scheduler, whereupon it executes in the same fashion as a

periodic event. Upon completion of the aperiodic event, the

process suspends itself until signaled the next time. A more

sophisticated approach would require modifications to the

timing table in the master scheduler a.id the prioritization of

the processes. This would entail marking the aperiodic events

33



with a flag and then schedule them in the same manner as

periodic events with the proper priorities. The next step is

done while scanning the table for executable processes and

would require the addition of logic to check for the flag on

aperiodic events and only signal them if circumstances

warranted.

Period transformation was not implemented in the current

scheduler due to limitations in the OS-9 operating system. To

function correctly with a minimum of modification to the

called processes, a method is needed to not only wake up the

called processes from the master scheduler, but also to

suspend the called processes. This is not possible; although

a method has been derived in which period transformation could

be implemented on, at least, a limited basis. This method

would require that extensive modifications be made to the

called processes and is beyond the scope of this study

[SHUKLA 91].

Upon the completion of the scheduler software development,

numerous tests and experiments were conducted to confirm the

scheduler's veracity, reliability and limitations. These

results are reported in the next chapter of this thesis.
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V. EXPERIMENTS AND RESULTS

A. GENERAL

Once the scheduler was written, it was necessary to devise

methods to ensure the scheduler's veracity and to demonstrate

the improvement it offered over passive OS-9 as installed. It

was also necessary to determine what processor loads it was

able to effectively schedule, and how various task sets

affected the scheduler performance. These results could then

be used to fine tune task sets for the desired performance.

Lastly, because the scheduler is implemented on a functioning

vehicle, real world events were simulated by constructing task

sets of random length execution times.

Task sets were constructed of identical dummy processes

consisting of C-language program headers combined with the OS-

9 primitives required to send and receive signals. Data was

gathered and sent to data files for later analysis in such a

way as to not interfere with the execution times of the

processes. Execution times were controlled by varying a timing

loop in the individual processes.

B. SCHEDULER VERIFICATION

To verify scheduler performance, it was first necessary

to show that the scheduler met the theoretical requirements of

RMS. These requirements included pre-emption of lower priority

processes by higher priority processes and a reliable means of
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meeting process deadlines. The dummy tasks were modified in

such a way that the start and stop times of execution were

recorded. At the end of the sample run, these values were

written to a file for analysis by band. The results of a

sample run with four tasks in the task set are shown in Figure

5.1 as a time-line similar to the time-lines found in [SHA

90] .

--- L--ifI _1 i r'J .. . I

It 'K 1  t K -

Process Period Execution Time
ID (ticks) (ticks)

P1 40 15
P2 125 20
P3 200 25
P4 300 30

Figure 5.1 Time Line Displaying Preemptive Scheduling

Preemption can clearly be seen as process PI, the process with

the highest priority, forces the delay of all other processes

in the set until it has completed execution. Likewise, P2
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delays all processes, save P1, until it has completed. It is

also clear that all processes met their assigned periods.

Although this example has only four tasks, it demonstrates

that the scheduler meets the theoretical requirements of RMS.

Other sample runs confirm these results for sets with a larger

number of processes.

C. IMPROVEMENT OVER OS-9

OS-9 is advertised as a multi-tasking operating system,

that supports real time operations [MICROWARE 87]. A test to

show that a separate scheduler was needed to improve

performance above that provided by OS-9 as implemented was

required. The test consisted of two tasks sets, both with six

processes running at 10 Hz. The first set was executed using

OS-9 alone; the other using the scheduler software developed.

Scheduler breakdown was measured as the percentage of missed

deadlines. Missed deadlines were determined by comparing the

number of signals sent vice the number of signals received by

each process. All graphs have the percentage breakdown on the

abscissa and the percentage of processor load on the mantissa.

As shown in Figure 5.2, OS-9 began missing deadlines at

processor loads of 30% while the implemented scheduler does

not miss a deadline until the 90% point, a clear improvement.

The poor performance of OS-9 was expected, as it implements no

real-time structure, but, rather, the primitives used to

construct those structures.
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Figure 5.2 OS-9 versus RMS Performance

D. PROCESS LOAD VARIATIONS

In order to ensure an effective scheduler on-board the

vehicle, experiments were conducted by varying task set

parameters to test scheduler performance. Standardization

between experiments was maintained by executing all task sets

over ten cycles where a cycle being defined as the least

common multiple of all periods in the task set.

1. Experiment 1

This experiment was designed to determine under what

load the scheduler started to breakdown, or miss process

deadlines. The task set consisted of six processes at a

frequency of 10 Hz. Figure 5.3 shows that scheduler breakdown
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began to occur at a 90% load, close to the maximum predicted

by [SHA 90].
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Figure 5.3 Performance for six 10 Hz processes

The processor load was varied by increasing or decreasing

process execution times while maintaining constant process

frequencies. Initial processor load was 50% and increased at

5% intervals upto 110%. Processor loads over 100% were

included to study scheduler stability characteristics.

2. Experiment 2

This experiment replaced one of the 10 Hz processes in

the first task set with a 20 Hz process. The sample run

consisted of the same processor loads as the first experiment.

As shown in Figure 5.4, the results were quite different from

the first experiment.
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Figure 5.4 Performance for One 20 Hz Process and Five .0 Hz
Processes

The earlier break down was explained, theoretically, as being

due to the increased overhead caused by the increased number

of task swaps incurred by the higher frequency process. After

more experimentation, it was determined that the highest

practical frequency for a process is 10 Hz. If higher

frequencies are required, processor loads must be limited to

no more than approximately 50%.

3. Experiment 3

This experiment determined the number of lower

frequency processes that could be executed successfully.

Figure 5.5 shows four different task sets consisting of eight

tasks each, with the number of 10 Hz processes varying from
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zero to three. The remaining processes are executed at 5 Hz.

Processor loads were the same as in the first two experiments.

It is interesting to note that while all task sets broke down

at approximately the 90% point, the breakdown was accelerated

proportional to the number of higher frequency processes

present. The various task groups are represented as follows:

solid line, eight 5 Hz tasks; dashed line, one 10 Hz task plus

seven 5 Hz tasks; dotted line, two 10 Hz tasks plus six 5 Hz

tasks; combination dotted and dashed line, three 10 Hz tasks

plus five 5 Hz tasks. From this it was determined that the

scheduler is more greatly affected by task frequencies than by

task execution times.
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Figure 5.5 Performance with Different High Frequency
Processes
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4. Experiment 4

This experiment was an attempt to devise and execute a

'typical' task set for the vehicle. A typical set being one

that could be expected to be found on AUV-II during a normal

mission. This set was constructed after discussion with

project members who were developing software modules for

guidance, control and sonar. The set consisted of eight

processes; two at 10 HZ, four at 5 Hz, and two at 2 Hz. The

results are plotted in Figure 5.6.
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Figure 5.6 Performance for a Typical Task Set for AUV-II

S. Experiment 5

This experiment was an attempt at developing a task set

that more realistically represented actual vehicle operation.

The same task set was used as in experiment 4 with randomized

execution times included. A random number generator was added
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to each child process along with the logic needed to apply a

normal distribution curve to the execution times. This code is

given in Appendix C. The distribution was such that 50% of the

executions were run at the mean time of execution; 40% of the

executions were run at +/- 10% of the mean time; the remaining

10% of the executions were run at +/- 20% of the mean time.

The lower utilization rate shown in Figure 5.7 was

predictable. A process cannot 'save' excess allotted time from

shorter than expected executions to make up for the longer

than expected executions later encountered.
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Figure 5.7 Performance for a Typical Task Set with Variable
Execution Times

6. Experiment 6

This experiment was virtually the same as experiment 5

with slight variations in the periods and execution times.

Figure 5.8 shows the results of the changed task set and is
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included to show the breakdown qualities of the scheduler

during sustained overload. The 'staircase' pattern was

predicted prior to the experiment and was caused by preemption

of the various lower priority processes. The more nearly

vertical lines are caused by deadlines missed. When the graph

first levels, all deadlines in the lowest priority process

have been preempted, but all higher priority processes are

still meeting their deadlines. The graph began to move upward

again when the next lowest priority process began to miss

deadlines.
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Figure 5.8 Scheduler Stability Under Sustained Overload

This 'shedding' of lo-er priority processes would continue

until only the highest priority process is still executing.

This orderly break down ensures stability and allows for more

efficient and safe vehicle operation under sustained overload
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conditions.

The experiments reported are a representative subset of a

much larger number of sample runs made to establish scheduler

reliability and performance. As can be seen by these results

the scheduler objectives listed in Chapter I have been met in

all cases and the scheduler, as implemented, can be considered

sophisticated enough for the present needs of AUV-II.

45



VI. CONCLUSIONS AND FUTURE RESEARCH

A. CONCLUSIONS

The primary objective of this research was to provide an

efficient, hard real-time scheduler for the AUV that would be

capable of maintaining a reasonably high processor utilization

rate. This was to be accomplished over the varying group of

task sets that the vehicle could be expected to encounter.

As implemented, the scheduler provides reliable, real-time

scheduling with utilization rates above 80% for almost all

variations of task sets. Under worst case conditions, and with

varying task set execution times, a 75% utilization rate was

not difficult to achieve. If care is used in developing the

task set to be used, the system operator should have little

trouble achieving utilization rates of 80% or higher.

Aperiodic events can also be handled with the current

implementation, although not as smoothly as with periodic

events.

As per the original specifications, the scheduler is

stable under overload. Lower priority tasks are always

suspended before higher priority tasks during overload

conditions, so a subset of the most critical processes always

meet their deadlines. Of course, the critical subset varies

with processor load.
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B. FUTURE RESEARCH

Although the scheduler meets all original specifications

and should serve well into the future of the prolect, several

modifications could be made to improve its performance and

capabilities. These could include the following:

1. A more soanisticated approach to aperiodic events. The

current method works well, but will not cover all

possible eventualities. An alternative method was

proposed in chapter V of this thesis.

2. Period transformation may be implemented to deal with

long period processes that need a high priority.

3. A graphical interface could be included that allows for

a running record of processor utilization, breakdown, and

overload conditions.

4. A user-producer algorithm could be implemented to deal

with the problem of dependent processes.

5. Once the appropriate compiler is available from GESPAC,

the software should be translated from C to Ada to more

accurately reflect Department of Defense policies.

6. Once Transputer boards are installed, modifications will

be needed to allow the scheduler access to the iiicreased

resources available.

7. Finally, if an increase in utilization rates are

required, a hybrid scheduling policy combining RMS and

dynamic priority assignment may be implemented.
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APPENDIX A. STARTUP MODULE SOURCE CODE

/* Program: STARTSCHED.C
Purpose: To assign highest priority to scheduler
Author: LT Brent L. Leatherman 20 MAY 1991

#include <stdio.h>
#include <errno.h>
#include <procid.h>

/* the following function are all OS-9 specific */

extern int wait(),os9forkc(),exit(),intercept(;
extern char **environ;

/* the following is the structure required to fork a process
the process to be forked MUST reside in the CMDS directory
as a compiled, executable module -NOT LINKED- with any
other module.

*/

char *argl[]={
"rate_mono", /* this line in the structure contains */
0,); /* the name of the process to be forked */

/* the following is the dummy intercept handler required when
forking a process */

icpthand(signum)
int signum;
{

/* intercept handler */

main()
unsigned status; /* used in wait command */

intercept(icpthand);
/* following is process creation */
os9exec(os9forkc,argl[O],argl,environ,0,62000,3)
wait(&status); /* suspend process until signal is

received from scheduler */
printf("Received signal from proc %d\n",status);
/* completion message to sysop */
exit(0); /* END PROGRAM */
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APPENDIX B. SCHEDULER MODULE SOURCE CODE

Program: RATEMONO.C
Purpose: To collect task set parameters, prioritize

the task set, determine task set
schedulability, and then to carry out the
scheduling policies.

Author: LT Brent L. Leatherman 15 APRIL 91
Theory: Based on rate monotonic scheduling theory

[SHA 90]
*/

#include <stdio.h>
#include <math.h>#include <errno.h>

#include <procid.h>
#include <setsys.h>
#include <signal.h>

/* constants */

/*SIZE determines number of tasks in set */
#define SIZE 15

/* MAXPRIORITY determines most critical tasks priority */
#define MAXPRIORITY 60000

/* The following functions are all OS-9 specific functions.
Kill(),Exit() & Wait() all deal with signals
OS9forkc), Intercept() & Erviron deal with process

creation
Sleep deals with process timing
getpid() & _getprocessdesc() deal with process

characteristics

extern
int
kill(),os9forkc(),exit(),wait(),sleep(),intercept(),
getpid(),_getprocess_desc(;
extern char **environ;
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/* This structure contains the required process
characteristics needed for process creation. A blank line is
required to hold the name of each process that will be created

char *argl[]=
{

"" /* each line is 10 characters long - the */
", /* length of the name of the process with*/
of, /* no '.C' appended. The number of lines */
1", /* must equal the variable SIZE

ti It
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/* The same structure as argl, used in the process of timing
individual processes by measuring the execution time of a
modified process named the same as before with an 'a' appended
to the executable module */

char *arg2[]=
(
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/* the following procedure is a dummy intercept handler that
OS-9 requires when returing from a fork command */

icpthand(signum)
int signum;
{

/* intercept handler */}

main ()

FILE *file; /* output file for signal recording */

/* the following variables are the various loop controls
required. The variable n, however, is the number of tasks in
the task set. /*

int m,z,t,p,i,j,k,l,n,
count,
mask, /* used to mask off top end of time stamp */
tickl, /* used to hold value of tick from time */
tick2; /* holds second tick value for comparison */

double T[SIZE], /* task set periods */
C[SIZE], /* task execution times */
W[SIZE][SIZE], /* holds intermediate values in

schedulability tests. See [SHA 86].

Li[SIZE](SIZE], /* next set of intermediate values.

Lint[SIZE], /* holds values when converting from
continous to discrete quantities */

L; /* the final value, if <= 1.0, the set is
schedulable */

schedpt[SIZE*2], /* holds scheduling point values
arbitrarily twice the maximum
number of processes */

temp,terml,templ,temp2,chk; /* simple holding
variables */

int LCM, /* the least common multiple of all periods */
process pri[SIZE], /* process priorities */
LCMARR[5*SIZE];/* used in the calculation of the LCM

arbitrarily set to 5 times the number
of processes
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double SCOREBOARD[SIZE][2]; /* a table containing periods

and pids for all processes */

unsigned status,svalue; /* used by OS-9 functions */

/* the following are used in the OS-9 timer system to
determine both elapsed and real-time */

int start-sec,starttick,adjust,date,
time,tick,timel,time2,mask2,sec,index,start time;

short sigcode,day;

/* the following are used to determine process characteristics

int pid, /* process id # */
gpiderr, /* error recorder from fork command */
loopcon; /* signal control variable */

procid parent;

sigcode=OxOl; /* hex signal used to wake a process */
pid=getpid(; /* function to determine process ID */
mask=0x0000ffff; /* hex code used to mask off top four

bytes of timer variable in order to
obtain number of ticks from system
clock */

processpri[o]=MAXPRIORITY; /* set hiahest priority to
the most critical task */

file=fopen("rate.out", "w"); /* open file for output */
********************************************************* ,/

/* The following section is input to the program
primarily task execution time C[] & task periods T[] *//,* ***************************************************** ,

printf("Number of forks desired:\n"); /* controls the
number of signals sent to the called processes.
Strictly used in the lab. Onboard AUV-II, will need
to be disabled or set to infinity *1

scanf("%d",&loopcon);
printf("\n\n");
/* number of processes in task set */
printf("Number of processes to schedule: ( <=15 )\n");
scanf("%d",&n);

/* following loop brings in task set parameters */
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for(i=O;i<n;i++)

printf("Enter the name of the process # %d\n",(i+l));
scanf("%s",argl[i]);
for(j=o;j<9;j++)

arg2[i] [j)=argl[i) [j];
strcat(arg2 [i)."al);/* used for process timing *
printf ("Enter the period of process #

%d (ticks) \n", (i+l))
scanf("%F",&temp);
/* 05-9 eccentricity - scanf commands MUST use

capital F vice lower case f *
T~i]=temp;
printf("\n\n");
printf("Enter the execution time\n");
scanf ( %F', &temp);
C~i]=temp;

/* the following code (commented out), if implemented allows
the timing of the processes to be done by the system vice
human entry */

-sysdate(3,&time,&date,&day,&tick); /* OS-9 timer
call *

printf("'Starting second is %d\n",time);
/* get start time of process creation */

tickl=(tick & mask); /* getting time in ticks *
timel=time*lOO+tickl; /* accounts for tick rollover

on the second */
intercept(icpthand) ;/* dummy procedure needed prior

to fork *
/* creation of a process */
os9exec(os9forkc,arg2[i],arg2,environ,Q,63000,3);
wait(O) ;/* scheduler waits for completion of process

1* get end time of process call *
-sysdate(3,&time,&date,&day,&tick);
tick2=(tick & mask);
time2=(time*lOO+tick2);
/* following is elapsed time calculation *
C[ i]=time2-timel;
C[i]=C~i]-40;/* correction factor for fork overhead

end of self timing sequence *
/* the following alerts sysop that timing is complete

and reports the results of the timing */

printf("**** Process # %d timing ****\nH,(i+l));
printf(I"execution time is: %.lf\n",C[i]);

printf("\n");
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/* The following code sorts the matricies C[] & T[] in
descending order based on process execution times (C C(I ) .
This is done by an insertion sort routine. The sort is needed
later in the program for priority assignment based on process
execution times. *

for(i=l;i<=n;i++)
(if (T[i]>T[i+l])

(chk=O;
templ=C[i];
temp2=Tri];
for(j=(i-l) ;j>=l;j--)

{C[j+l]=C[j];
T[j+l]=T~j];
if(T[j-l]<=temp2)

Tn ]=temp2;
j=l;
chk=1;

if (chk! =1)
{C(l]=C[O];
T [ 1)=T[ 0];
C[j ]=templ;
T[j ]=temp2;

1* end sort routine *

/* the following code computes the scheduling points as
described in Chapter IV. The points are stored in the array
schedpt(] *

count=O;
for(i=0;i<n;i++)

for(j=0;j<=i;j++)

for(k=l;k<=floor(T[ i]/T[j3) ;k-i+)
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f lag=O;
S=k*T[j]
for (p=1 ;p<count;p++)

{if(S==sched~yt[p)
flag=l;

if (flag==O)

schedpt [count] =S;
count++;

/* The following code computes the Wi(t) as described in
chapter IV of this thesis. *

terml=O;
for (i=O ;i<n; i++)

for(t=Q ;t<count;t++)

for(j=o;j<i;j++)

terll=terml+C[j]*ceil(schedpt[t-]/T[j]);

W[i]lt]=terml; /* Eqn (4.2) *
terxnl=O;

/* The following code computes the Li term as described in
equation 4.3 in chapter IV *

for(i=O;i<n; i++)

for(t=O ;t<count;t++)

Li[i][t]=(W[i][t]/schedpt(t]); /* Eqn (4.3) *
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/* The following code finds the minimum Li for (O<t<Ti) as
described by eq. 4.4 of chapter IV. *

for(i=O; i<n; i++)
Lint[i)=lOOQQ;/* arbitarily large number*/

for(i=o;i<n;i++)

for (t=Q ;t<count;t++)

if(Li~i]lt]<Lintji]) 1* Eqn (4.4) *
Lint~i]=Liri] [t];

/* The following code computes the maximum value of Li. If
this value is less than, or equal to 1 the task set is
schedulable, else it can not be done. This routine will also
tell the user how much excess processor time is left *

for(iz=0;i<n;i++)

if(Lint~i]>L)
L=-Lint[i];

U=0; /* determines processor load *
for(i=0;i<n;i++)

U=U+C [ i]/T (i ] ;/ * i f processor load > 1. 0, not sched./
if ((L<=l)&(U<=l) /* Eqn 4.5 */

printf('Process set schedulable.\n\n");

printf("Process set not schedulable\n\n");
printf("'Total remaining processor time is:

%.2f1, (l-U)*l00);
printf(" percent\n\n\n\n");

/* The following code computes the least common multiple of
the periods of all processes in the task set in order to
calculate relative priorities. *
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temp=l;
for(l=0;l<n;l++)
temp_period[l]=T[l];

for(l=0;l<n;l++) /* scan list for prime numbers */
(

/* check for even divisors using modulo arithmetic */
for(k=O;k<n;k++)

{
if((l!=k)&(tempperiod[l]%temp_period[k]==O))
tempperiod[l]=l; /* check for divisibility */

}
)

for(l=0;l<n;l++)
(
m=tempperiod[l];
count=0;
for(i=2;i<=m;i++)

{
if((m%i)==O){

flag=O;
for(j=o ;j<count;j++)

{
if(i==LCMARR[j])

flag=l;/* recording LCM points */
)

if(flag==O)
(
LCM_ARR[count]=i;
count++;/* how many LCM points */

m=m/i;
i=2;

)
)

for(k=O;k<count;k++)

temp=temp*LCMARR[k];
LCMARR [ k] = 0;

LCM=temp;

/* end of LCM routine */

/,* ****************************************************** */

/* The following code assigns priorities to the scheduled
processes. The processes with the shortest execution time have
the highest priorities as per [SHA 90]. The exact priority is
assigned in accordance with an equation (4.1) */
1, ***************************************************** */
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temp=1;
templ=O;
teinp2=1;
for(i=l;i<n;i++)

for(j=O;j<=(i-1) ;j++)
temp2=temp2*T[j];

for(k=O;k<=(i-1) ;k++)

for(1=O;1<=(i-1) ;l++)

if (1!=k)
temp=texnp*T[l];

templ=templ+C[k] *temp;
temp=1;

processpri [i ]=process pri[0] -
ceil(LCM*(templ/temp2)*5*i);

/* Eqn (4.1) *
templ=0;
ternp2=1;

templ=0;
for(i=0;i<n;i++)

if(T[i]>templ)
templ=T[i];

for(i=l ;i<n; i++)
processypri[i]=processpri[0]-(i*templ);

/* end of priority assignment routine */

/* following code prints statistical messages to a file on
disk - a compilation of task set parameters *1

fprintf (file, "process# \texec. time\t period\t\tpriority\n");
fprintf(file," ____\t \t ____\t\t_______

for( i=0; i<n; i4+)
{fprintf(file," %dI, (i+1));
fprintf(file," %.lf'I,C[ij);
fprintf(file," .fITi)
fprintf(file," %d\nI",processypri[i]);

fprintf(file, "\n\n\n\n\n\nI);
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/* the following loop is an infinite while loop that will
control the processes to be forked off. A "scoreboard"
type approach used in that when a process is signaled,
it's next execution time is computed and scheduled. Psuedo-
code for this procedure may be found in figure 4.3. */

1* ******************************************* */

count=O;
_sysdate(3,&time,&date,&day,&tick); /* get time */
tickl=(tick & mask);
pid=getpid); /* get process id number */
adjust=O;
for(i=O;i<n;i++)
{
intercept(icpthand); /* dummy intercept handler */

os9exec(os9forkc,argl[i],argl,environ,o,process_pri[i],3);
_getprocessdesc(pid, sizeof parent, &parent);

SCOREBOARDri][O]=T[i]; /* enter original period in
table */

SCOREBOARD[i][l]=parent._cid; /* enter process id */
printf("process id # %d is %d\n",(i+l),parent. cid);
printf("ratemono pid is: %d\n",pid);

while(count < loop-con) /* infinte loop when in vehicle */

sec=O;
for(i=O;i<n;i++)

(if(SCOREBOARD[i][O]==0)
INDEX[sec]=i; /* record values */
sec++;

)
/********************************* *

/* find all processes with zero time */
/* left. This indicates that they
/* are ready for execution. These
/* are recorded in INDEX.
/,* ** * **** ****** ******************** *

)
sysdate(3,&time,&date,&day,&tick);

tickl=(tick & mask); /* start time */
for(z=O;z<sec;z++)

(
sigcode=SCOREBOARD[INDEX[z]][l]; /* get process id

that is to be signaled */
kill(sigcode,l); /* send wake up signal */
count++; /* counts number of signals sent */

)
sysdate(3,&time,&date,&day,&tick);
tick2=(tick & mask); /* end time */

59



if(tick2<tickl)
tick2=tick2+100;

adjust=tick2-tickl; /* time used in signaling process

/* the following code reassigns original period to signaled
processes */

for(i=0;i<sec;i++)
SCOREBOARD[INDEX[i]][0]=T[INDEX[i]];

/* the following code subtracts the time used in signaling
from all processes */

forli=0;i<n;i++)
SCOREBOARD[i][0]=SCOREBOARD[i][O]-(adjust-I);

temp=10000;
for(i=0;i<n;i++) /* find shortest time to execution

if(SCOREBOARD[i][0]<temp)
temp=SCOREBOARD[i][0];

for(i=0;i<n;i++) /* subtract smallest time */
/* from all periods /*

SCOREBOARD[i][0]=SCOREBOARD[i][0]-temp;

/ * ****************************************************** *1
/* the next code puts 'main' to sleep for the shortest

period remaining in the table. *// * ****************************************************** *

if(temp <=0)
fprintf(file,"problem with temp\n");

/* OS-9 eccentricity. If tsleep is used with the value 0
(zero) or below, it goes to sleep forever, system
reboot is required to restart system. */

if(temp>0)
(svalue=ceil(temp);
tsleep(svalue);
/* system suspension to allow execution of

signaled processes */
))

/****************************** *

/* end of fork coding */
******************************* ,/

/* the following code allows for an orderly, gracful end ",o
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the scheduler. It kills all active processes, returning all
resources back to the system manager. *

fclose(file);
tsleep(lOQO);
for(i=o;i<n;i++)

{sigcode=SCOREBOARD[i] [1];
kill (sigcode,0);

exit(pid);
/* END PROGRAM *
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APPENDIX C. MODIFICATIONS TO CALLED MODULES

/* Program: PROCi.C
Purpose: To illustrate a dummy process used in

experimental verification of the scheduler,
and the modifications necessary to function with
the implemented scheduler.

Author: LT Brent L. Leatherman 12 MARCH 1991

#include <stdio.h>
#include <errno.h>
#include <signal.h>
#include <setsys.h>

/* following functions are OS-9 specific */

extern int exit();
extern char **environ;

main()
{

FILE *file; /* needed for statistical dump following
execution */

int date,time,tick,mask; /* needed to access system
clock */

short day;
int z,k,i; /* loop control variables */
int holdtime[100][4]; /* holds start and stop times */
int count;
mask=OxOOOOffff; /* mask used to get time in ticks */
count=O; /* counts number of signals received */
z=l;

/* The following is the infinite loop modification required
by the scheduler. It needs to encompass all code that is
to be executed each time and NOT initialization commands
that are to be done only once. If the self-timed module
execution option is being used, this loop should be
removed so that an accurate timing of one execution is
recorded. */

while ( 1)

printf("procl count = %d\n", count); /* msg to sysop */
_sysdate(3,&time,&date,&day,&tick); /* get start time */
tick=(tick & mask);
holdtime[count][O]=time; /* record start time in

seconds */
holdtime[count][l]=tick; /* record start time in ticks
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/* The following is a delay loop used to simulate process
execution times, replaced by process code on AUV-II . A
loop count of 3300 equals a time period of one tick, or
one millisecond. */

for(i=l;i<3300;i++)
z=z+l;

sysdate(3,&time,&date,&day,&tick);
tick=(tick & mask); /* find and record finish times */
hold time[count][2]=time;
hold time[count][3]=tick;
count++;

/* The following code is needed due to the measurable time
required to write to a hard disk drive. Therefore,
instead of writing each time as it comes in, the times
are recorded and then written in a batch at the users
discretion using modulo arithmetic on the variable count.
In this example, times are recorded every 20 signals */

if((count%20)==0)

/* the following are the statistical outputs */
(

file=fopen ("outl", "a");
fprintf(file,"stats for process #2\n");
for(z=0;z<count;z++)
{
fprintf(file,"proc 2 start time:
%d.%d\n",hold_time[z3[0],hold_time(z][l]);
fprintf(file,"proc 2 end time:
%d.%dkn",hold_time[z][2],hold_time[z][3]) ;

fclose(file);
count=0;

)
exit(0);

/* END PROGRAM */
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/* Program: PROCj.C
Purpose: To demonstrate the random number generator added

to vary execution time. The rest is identical to
the first dummy procedure.

Author: LT Brent L. Leatherman 12 MARCH 1991

#include <stdio.h>
#include <errno.h>
#include <signal.h>
#include <setsys.h>

extern mnt exit();
extern char **environ;

main()

FILE *file;
mnt date,time,tick,mask;
short day;
mnt z,k,i;
mnt hold time[1OO] [4];
mnt count,next,

rand_num,
length, /* nominal execution time *
lengthl, /* execution time -20% *
length2, 1* execution time -10% *
length3, /* execution time +10% *
length4; /* execution time +20% *

mask=OxOOOOffff;
count=0;
z=1;
sysdate(3,&time,&date,&day,&tick);
next=(tick & mask);
rFngthl=2666; /* various execution times *
length2=3000;
length3=3 666;
length4=4 000;

while (1)

length=3333; /* nominal execution time *

/* random number generator */
/* initial seed comes from system clock *

next=next*1103515245+12345;
rand-num=((next/65536) % 32768);
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/* The following code sets up the distribution pattern, as
follows:

5% of the time execution time is -20%
20% of the time execution time is -10%
50% of the time execution is nominal
20% of the time execution time is +10%
5% of the time execution time is +20%

if(rand_num<O)
rand-num=rand num*(-l);

if(rand_num<1638)
length=lengthl;

if((rand -num>=l638) & (rand-num<8191))
length--length2;

if((rand -num>=24574) & (rand-num<31127))
length--length3;

if(rand-num>=31127)
length=length4;

printf("lproclO count =%d\n", count);
-sysdate (3, &time, &date, &day, &tick);
tick=(tick & mask);
hold -time [count] [0]=time;
hold time [count] [1]=tick;
for (i=l ;i<length; i++)

z~z+l;
-sysdate (3, &time, &date, &day, &tick);
tick==(tick & mask);
hold time[count] [2]=time;
hold time[count] [3]=tick;
count++;

if( (count%20)==0)

file=fopen("Iout1", "a");
fprintf(file,"stats for process.#2\n"l);

for (z= ; z<count ;z++)

fprintf(file,"proc 2 start time:
%d.%d\n",hold_time[z][0],hold_time~z][l]);

fprintf(file,"proc 2 end time:
%d.%d\n",hold_time[z][2],hold_time~z][3]);

fclose(fi.le);
count=0;

exit(0);
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APPENDIX D. OS-9 SPECIFIC REAL-TIME PRIMITIVES

The following is a list of real-time primitives supported

by the OS-9 operating system. All descriptions come from

[MICROWARE 87].

- os9forkc: used to create a process

- exit: used to terminate a process

- wait: used to suspend process until a signal is received

- sleep: used to suspend a process for a specified number

of seconds

- tsleep: used to suspend a process for a specified number

of ticks

- alm_atdate: used to send signal at specified Gregorian

date

- alm atjul: used to send signal at specified Julian date

- alm cycle: used to send signals at constant intervals

- alm_set: used to send a signal after a specified elapsed

time

- kill: used to delete a process

- abort: used to stop process from keyboard

- wake: used to place suspended process on ready to

execute queue
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